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NON-EQUILIBRIUM HOT-CARRIER DIFFUSION PHENOMENON IN SEMICONDUCTORS
1. A THEORETICAL NON-MARKOVIAN APPROACH*

J. Zi-emnn', P. Lugli and D.K. Ferry

Colorado State University, Fort Collins, CO 80523, U.S.A.

*Permanent addrvess : C.H.S. and Greco Microondes, Université de Lille 1, France
Résumé - Le problime de la diffusion de porteurs chauds dans les semicon-
ducteurs est étudié A 1'aide d'une Equation de Langevin Retardée (RLE)
appliquée au cas de la réponse transitoire dynamique (TDR) A un champ €lectrique
stationnaire homogdne. Une fonction de corrélation des fluctuations de vitesse
non-stationmaire est définie et est reliée 2 un coéfficient de diffusion
dépendant du temps. Ceci est appliqué au Silicium type-N et les cuantités
intéressantes sont étudifes em fonction de 1'espace et/ou du temps. Le
problime de diffusion non-statiomnaire est particulidrememt important dans

les composants A canaux ultra-courts ol réponse transitoire dynamique et sur-
vitesse se manifestent.

Abstract - The problem of hot carrier diffusion in semiconductors is studied
with a non-Markovian Retarded Langevin Equation (RLE) applied to the case of
carriers in the transient dynamic response (TDR) to a steady homogencous elec-
tric field. A non-stationary velocity fluctuation/correlation function is
defined and related to a time dependent diffusion coefficient., This is applied
to n-type silfcon and the parameters of interest are studied as a function of
space and/or time. The problem of non-stationary diffusion is particularly
important in very short channel devices in which TPDR and velocity overshoot
occur.

1. Imtroduction.- In recent years, much interest has centered upon the transient
dynamic response of electrons as it impacts carrier tramsport through small spatial
regions of high electric field. With recent improvements in technological fahrica-
tion of very-short-channel devices, this problem has become not only of theoretical
interest but of practical interest as well., For instance, in the pinch-off region
of a short-gate field-effect transistor, the carriers injected at the source move
by a combination of drift and diffusion in a very high electric field. Then the
transit time of the carriers under the gate can be shorter than, or of the same
order of magnitude as, the time nseded to establish a steady-state high-field dis-
tribution function. In fact, a condition for this to occur is that the transit-
time in the high-field region be comparable to the momentum relaxation time thus
causing the velocity to increase, but msuch shorter than the energy relazation time.
Thus, on average the carriers may transit through a considerable portion of the
high-field region with almost their low field mobility evenm thoush the applied
field corresponds to the saturated velocity range [1]. This is true mot omly for
the first-order moment of the distribution function of the carriers (drift welocity),
but also is true for higher order moments, and especially for diffusion (related to
the second moment). The diffusion coefficient is one of the most fmportant

4This work supported in part by the U.8. Office of Naval Research.
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parameters required in modeling semiconductor devices, it is not only necessary for
evaluatine operating characteristics and freauency characteristics but it provides
also fundamental characterization of velocity fluctuations in the system and their
contribution to noise in the device [2]. Diffusion actually is a process depending
upon velocity correlation and the relationship between diffusion and drift, as
expressed by the Einstein relation, is a steady-state relation [3]. Indeed, tract-
able results for the steady-state hot electron prohlem have orly recently been
achieved [4-6). The problem in the transient region is compliceted by the fact that
the random-walk equations governing transient diffusion do not reduce to normal

Fick's law behavior on time scales comparable to the relaxation process, a result qf

the general non-Markovian and non-stationary nature of tramsport on these time
scales. In this paper, we address some of these problems with the help of a Retard-
ed Langevin Equation (RLE) in order to approach the random walk of the carriers.
Furthermore, we define a non-stationary two-time correlation function for the ve-
tocity fluctuations which can be related to a transient diffusion coefficiemt. The
formal solution of the RLE allows us to derive a general expression for the correla-
tion function. Then, we deal with the diffusion coefficient itself and show in
particular that the transient diffusion coefficient is related to the time deriva-
tive of the mean-square displacement of the carriers. However, it is found that in
the 1limit of long times, stationarity and the normel equations for correlation and
diffusion are recovered.
2. The Retarded Langevin Equatiom Approach.- We consider an ensemble of carriers
initially at equilibrium with the crystal lattice. The ensemble is represented by
a Maxwell-Boltymann distribution in v-space (<v> = 0 and > = 3?1'1'1./- with T‘L the
lattice temperature). At a certsin time, referred as t = o, we apply a macroscopi-
cally homogeneous and steady electric field whose amplitude corresponds to hot car-
riers. These conditions give rise toa TDR regime in which the system relaxes toward
2 non~equilibrium, steady~state and often exhibits a velocity overshoot.

The motion of the particles is governed by a Retarded Langevin Rquation for the

velocity of the carriers, snd is writtem as [7,8)
t

- %:t! =--m I Y(t-w) v(u)du + R{(t) + aEN () e )]

°
whare R(t) is a random force symbolizing the vandom (non-regular) part of the col-

lisions of the carrfers with the lattice (no carrier-carrier interaction 1s consid-
ered here), B is the external fiald, amd h(t) is the Neavyside function. V(t) s
the memory function of the systen snd is related to the corvelation fwmction of the
total force applied to the system. For instance in the case of a statiovary regime,
we vould have 7(t) = R(D)R(t)>/n’ev2(0)>, in abesace of extermal forces [3).
Bquation (1) is a nen-Markoviea form of the Langevin equation, since the rate
of change of the velocity st t mot ouly depends oa the velocity at thet time but
alse deponds on all past tims. Purther, it is a noa~stationary equation, sisce the
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* lower bound in the integral refers to that time vhere the disturbing field was
' applied. It is generally admitted by now that only an equation such as (1) can de- '
1 scribe very-fast processes [3,7,8), and in particular the TR regime can be de- i
scribed in this way. In (1), we have assumed a parabolic energy band {9].

We may easily solve (1) using Laplace transforms. We introduce & function
X(t) defined by its Laplace transform, as

Xe) = (s + ¥ . @ _ |
‘I Then, coming back to time domain, we find

|
t t l
- At} = 3(o)X(e) 4 él-%—-f-:«u)du- +1 f R(t-u) X(udu |, [E)) ‘ :

) °
L vhich is a general expression of the evolution of the velocity of each carrier under
the influence of the external field and of the collisions. WHe get X(t) by aver-
ﬁ aging (3) over the ensemble (we assume <R(t)> = 0). The result is

X(t) = 2 d_v.d. (4)
qE, dt ’

vhere vd(t) is the ensemble drift velocity of the carriers. Therefore X(t) repre-
sents in fact the macroscopic acceleration of the ensemble. However X(t) can be
given another definition. Ve define a non-stationary cotu}nieu function for the
velocity fluctustions as )

OAv(t'.t) = OAv(t,t') = <y(t)v(t')> - vd(t)vd(t') . (5)

y ' Multiplying both sides of (1) by v(o), averaging over the ensemble (note that
<R(t)v(o)> = 0), Laplace transforming and making use of (2) we obtain after re-
' : ! L0 transforming

bay(0st) = <v2(0)> X(©) . (©

: X(t) is the reduced non-stationary correlation function calculated at t' = o. Com-
D paring this equality vt:h (4) gives

vg(t) = ﬁ)—’ J Oh(mt')dt' . (&)
This relationship existing between the first amd s second moment of the velocities
of the carriers is a direct intrinsic property of the RLK used to describe the TIR
regime. Whether this equality is met is one of the goals of the sext paper (10],
but (7) is a statement of the familiar Xwbo formals [11) found im equilibriwe
statistical mechenics.

To develop a complete expression for the correslation fusctios defined 1a (3),
we need to know the correlation fumctioca of the randem foree R(t) which appears vhem
we put (3) into (5). If we sesume thet the colliisieus occur imstantameocuwaly in time
we can write
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RER(L')> = zuk(:.:')s(le-:'l) (8

Relaxation of this condition does not significantly affect the results found in the
present work. A consequence of (8) is that only Ill(t) - I‘(t,t'-t) is of interest
in the current context and this latter function can be obtained from the time evolu-
tion of the mean energy of the ensemble. Then the correlation fumction .Av can be

put in the form (with 6 > 0) ¢
0
$p(Eosty + 8) = <vz(o)>x(t°)X(t°‘+ 0) + f}'- f L (8~ DXEGIX(y + g)dy , (9)
. (-]
and in particular we obtain for the mean-energy:
t
COLEE PRATCRE PRLIOTE JORE! I L, Eody . a0
(]

We can sum up this part by saying that if, in the curremt conditions of the TDR
regime, the evolutions of the drift velocity and the mean-energy are known, then the
fluctuations of the aystem are completely specified through (9) and (10) together
with (4).

3. The Diffusion Coefficient.- Using expression (5) for the non-stationary correla-
tion function of velocity fluctuations, we cen define a non-stationary or time-de-
pendent diffusion coefficient, which is a generalization of the definition given in
a stationary r:g:l-c 13,61 ’

p(t) = I ow(t'.t)dt'- . (11)
-]
Another way to define the diffusion is through the spreading of a packet of

carriers drifting under the influence of the external force and spreading due to the
fluctuations of the velocities of the carriers. This spresding is characterized by
the mean-square displacement of the carriers starting from ¢ known initial distribu-
tion (a Mirvac-function in space, for i:nc:uu). It is easy to see that

adw> = <aw-xen> - [ [ 0nemaee a2)
-] o
From the definition (12{. it is straightforward to show that
34wl - L’Av“"""" -n(e) . a3

This shows that the diffusion coefficient defimed in (11) is related to the time-
derivative of the sverage-squars displacement. The usual definition of the dSffu-
sion in s steady-state is in fact a limiting case of relation (13). “hen the time
t' at which the iategration of Oh(c'.t) begins is grester then the time t, needed
for the system to reach ststionarity, 4,y becomes an even function of t-t' omly,
chen o
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As t + =, D.(t) tends to a constant finite limit n. and

1w <b2(t)> = 2t >, Cas
t+e

Therefore (11) defines a general diffusiom coefficimt which is valid in both sta-

tionary and non-ltlt:l.onlry regimes, and as we did abcve for ‘h we can derive an

expression for <Ax (t)"
t

qzl «%(0)> v, 2(e) + z! 5 Ilu(t-u) vdz(u)du . (16)
[ ]

sz(t)> -

The expression of D(t) follows _dutcly using (13).
4. Application and Discussion.- In the case of n~type §1<111>, the carriers behave
as if the emergy band wvas unique with an isotropic effective mass m . There, the
concepts described above are easily applied.

i) The oscillatory nature of the velocity overshoot stromgly suggests that
the memory function Y(t) (and ¥(t), &s well) is an exponential. So we specify v(t)
via the ansatz [12]

() = [y, + 2t - O an

1/T is the time needed for the system to reach stationarity and as such is equiva-
lent to the energy relaxation time.
11) To have an insight into the time dependence of Iu(t). we can make use of

(10) and the results given by a Monte Carlo method {10] for <e{t)> . It is thus
possible to show that

Ly =L + (- LA - 1 =T as

is a good approximation for the correlation function of the random force R(t). I._
18 given by the static diffusion coefficient
w
N =

—F , (19)
* s 1)

and Ilo << IR" The value of Iln does not affect significeantly the resulte since at
short times the second term in the RHS of (16) 1is an order of magnitude smaller than
the first term.

Taking (17) and (18) into account, oh(t'.t) and N(t) are easily derived asaly-
tically and computed. We present here soma computed results obtained with E = 50
kV/cm. The non-ststionary correlation function is displayed in Tig. 1, and its
evolution is studied for different initial times t, from 0 to 0.5 ps (the letter
corresponds to the steady-state). The fact that the correlation functivm is steeper
meoilmmhqmthdemtmhﬂ—qun
function of time corresponding to the heating of the carriers. Ia other words, st
short times the correlation function is dominated by the faitial distribution of the
velocitiss of the carriars, while st lomger times, when the stesdy-stute is
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approached, the system has been completely randomized by the collisions and the
correlation function is dominated by the random force (i.e. lu(r.)).

The mean-square displacement and diffusion coefficient are displayed in Fig. 2
as a function of the distance travelled by the carriers. This shows Sh. spatial
extension over vhich the system is in a non-statiomary regime, ~ 400 A in the
present case. These results are compared to what would occur in case of a pure
ballistic regime. In fact, the calculated D(x) departs from the hallistic trend
even at very short times (and distances) meaning that no bsllistic regime exists for
transient diffusion. On the contrary at longer times D(x) Roes through a maximum
and then decreases to its stationary value. This is, of course, related to the
oscillatory nature of the correlation functions and these oscillations are essen-
tially thc‘comeqmee of the combination of momentum and energy relaxation in the
resolvent X(s) of the RLE. In the present example, this resolvent is a rational
fraction vhich has two complex conjugate poles.

Possible extensions of the work could be: 1) the application of the pregent
technique to multivalley semiconductors; ii) to take into account spatial varia-
tions of the elactric field and then get a more precise picture of vhat occurs in a
short-channel device; .1ii)- to try s more physical and less phenomenclogical approach
using qusntum statistical mechamics [13].

In susmary, we have obtained here a consistent definition of the diffusion
coefficient in terms of the velocity auto-correlation function. This definition is
valid in the transient and non-stationary regime and reduces to the normel expres-
sion as steady-state is approached. The application of this to the retarded, non-
stationary Langevin equation yields expressions for the velocity correlation func-
tion and diffusion coefficiemt which have excellent qualitative agreement and satis-
factory quantitative agreemsut to results obtained by a Monte Carlo method (10].
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